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The Round Functions of SERPENT Generate the Alternating
Group

Ralph Wernsdorf
SIT GmbH, 12557 Berlin, Germany1

1 Introduction

The SERPENT algorithm is a block cipher with a block length of 128 bit that has been
submitted for the AES selection process. It was developed by R. Anderson, E. Biham and L.
Knudsen [1].

In the following a proof is given that the one round functions of SERPENT generate the

Alternating Group over the set { }1281,0  of all 128-bit-vectors.

This result implies that from the algebraic point of view some thinkable weaknesses of
SERPENT can be excluded (if the generated group were smaller then this would point to
regularities in the algorithm, see for example [4], [5], [8]).

An analogous property is known for the block ciphers DES [6], IDEA(32) [4] and SAFER [2].

2 Definitions and Notations

The notation of the SERPENT round function components will be taken from the SERPENT
definition given in [1] (note that the presentation given on the pages 3 - 4 in [1] is used here
and not the bitslice presentation on the pages 5 - 6 in [1]. For convenience the little ”roofs” on
the symbols are omitted here.).

The round functions Ri are defined by:

{ } { } )),((:)(:1,030,,1,0 128 KXSLXRXi ii ⊕=∈∀∈∀ K

where ”⊕” denotes the bitwise XOR-operation,

{ }1281,0∈K  denotes the corresponding round subkey,

{ } { }128128 1,01,0: →iS  denotes the application of the S-box Si (i mod 8) 32 times in

parallel and

{ } { }128128 1,01,0: →L  denotes the linear transformation according to the binary matrix
on the pages 19-20 in [1].

The S-Boxes { } { }44 1,01,0 →  are denoted by S0, S1, ... , S7.

The permutation group G considered here is defined by:

{ } { } { } { }{ } ,1,0,7,,1,01,01,0:: 128128128 ∈∈→= KiRG i K

where ” M ” denotes the closure of a permutation set M with respect to concatenation.

Properties of the round subkeys caused by the key scheduling will be neglected here.

Therefore the generating set of G contains 12828 ⋅  permutations.
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3 Some Elementary Properties of the Generated Group

Lemma 1: The group G is transitive on the set { }1281,0 .

Proof: By concatenations ii RR ′− o1  with suited round subkeys K, K´ each given element of

the set { }1281,0  can obviously be transformed to each other arbitrarily given element of the set

{ }1281,0 .
n

Lemma 2: The group G contains only even permutations.

Proof: The mappings XKX ⊕→  are even permutations, because for K = (0,0,...,0) we
obtain the identity permutation and for )0,,0,0( K≠K  the cycle representation consists of
2127 cycles of length 2.

The linear transformation L is an even permutation, because binary one-to-one linear

transformations over { } 3,1,0 ≥nn , are always even permutations (see for example [3]; besides
this, the author found by computations, that all cycles in the cycle representation of L have
odd length.)

The permutations Si are even, because they can be represented as concatenations of parallel

applications (32 times) of 2-cycles over { }41,0  (14 fixed points and one cycle of length 2).
Such a parallel application of 2-cycles yields a permutation with 1432 fixed points and

3231127
32128

722
2

142
⋅−=

−
 cycles of length 2. The number 3231127 722 ⋅−  is even, hence

the parallel application of 2-cycles is an even permutation.
Now the proof is complete, since the concatenation of even permutations always yields an
even permutation.

n

Lemma 3: For all permutations on { }41,0  the parallel application (32 times) is an element
of G.

Proof (sketch): We choose round functions with the all zero subkey and consider products of

the form .1
ii RR ′

− o  It is not difficult to check that for example 0
1

1 RR o−  and 0
1

3 RR o−  can

generate all permutations of the required form. (The permutations 01 1 SS o−  and 03 1 SS o−

generate the symmetric group on { }41,0 .)
n

Corollary 4: The linear transformation L is an element of G.

Proof: We choose an arbitrary round function Ri with the all zero subkey: )).(()( XSLXR ii =
From Lemma 3 we know that Si is an element of G. This immediately implies GL ∈ .

n
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Lemma 5: For all even permutations { } { }44 1,01,0: →P  and for all { }31,,1,0 K∈j  we have:

The mapping { } { }128128 1,01,0: →M  defined by:

{ }




=
=

=∈∀ ++++++

else       

),,,,(),,,(
 with )(::1,0 34241443424144128

ii

jjjjjjjj

XY

XXXXPYYYY
XMYX

is an element of G.

Proof (sketch): We choose round functions with the all zero subkey (with the exception of

the components 3424144 ,,, +++ jjjj KKKK ) and consider products of the form .1
ii RR ′

− o  It is

not difficult to check that these products can generate all permutations of the required form.
n

Corollary 6: For all 32-tuples of even permutations { } { } 31,,1,0,1,01,0: 44 K=→ jPj , the

mapping { } { }128128 1,01,0: →′M  defined by:

{ }




=
=

′=∈∀ ++++++

31,,1,0

),,,,(),,,(
 with )(::1,0 34241443424144128

Kj

XXXXPYYYY
XMYX jjjjjjjjj

is an element of G.

Proof: Each mapping M´ of the described form can be represented as a product of
mappings M of the form described in Lemma 5.

n

4 Proof that the Round Functions Generate the Alternating Group

Lemma 7: The group G is doubly transitive on the set { }1281,0 .

Proof: Because the group G is transitive on the set { }1281,0 , it suffices to show that the
subgroup G0 of G containing all elements of G which let the all zero vector fixed, is transitive

on { } { })0,,0,0(\1,0 128 K  (see [7], p. 19).

Let us start with an arbitrary non-zero vector { }1281,0∈X . With the help of Corollary 6 it can
be shown that it is always possible to find an element of the subgroup G0 that transforms X to
a vector )0,,0,0( K≠′X  with:

{ } { })1,1,1,1(),0,0,0,0(),,,(:31,,1,0 3424144 ∈′′′′∈∀ +++ jjjj XXXXj K .

(Choose even permutations Pj that (*) let (0,0,0,0) fixed and that transform the non-all-zero-
components ),,,( 3424144 +++ jjjj XXXX  to (1,1,1,1).)

By computations on a PC it has been verified that it is always possible to transform the
mentioned X´ to the all-one-vector by repeated concatenations of L and permutations of the
form (*) above. (There are only 232–1 such vectors X´.)

Because we have 0GL ∈  it follows that G0 is transitive on the set { } { })0,,0,0(\1,0 128 K .

Hence, G is doubly transitive on the set { }1281,0 .
n
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Theorem: The group G equals the Alternating group over the set { }1281,0 .

Proof: For the proof we apply a part of Theorem 15.1 in [7], p. 42:

”Let G be a k-ply transitive group, neither alternating nor symmetric. Let n be its degree, m

its minimal degree. If 2≥k , then 
3

2

3

nn
m −≥  .”.

Here the minimal degree is the smallest degree of the non-identity-permutations in the group,
where the degree of a permutation is the number of the elements that are not fixed by the
permutation.

From Corollary 6 it follows that the permutation ),,,,( 1110 PPPP K , where P1 is the identity

permutation on { }41,0  and where the cycle representation of P0 contains a 3-cycle and 13

fixed points, is an element of G. This permutation lets exactly 431213 ⋅⋅  elements of { }1281,0

fixed. Hence, its degree is equal to 12423 ⋅  and the minimal degree of G is not greater

than 12423 ⋅ .
Now, let us suppose that G is smaller than the alternating group. Then, (because of Lemma 7
G is doubly transitive) according to Theorem 15.1 in [7] we obtain the inequality:

3

2

3

2
23

65128
124 −≥⋅ .

Thus, we obtained a contradiction. From this together with the result of Lemma 2 it follows

that G equals the Alternating group over the set { }1281,0 .
n

5 Conclusions and Remarks

By the result stated in the Theorem several thinkable regularities in the SERPENT algorithm
can be excluded (the Alternating group is a large, simple, primitive and (2128–2)-transitive
permutation group).

With respect to the Markov approach to differential cryptanalysis we obtain [4]:
For all corresponding Markov ciphers the chain of differences is irreducible and aperiodic, i.e.
after sufficiently many rounds all differences will be almost equally probable. If the
hypothesis of stochastic equivalence holds for a part of the corresponding Markov ciphers,
then for all of these Markov ciphers SERPENT is secure against differential cryptanalysis
attacks after a sufficient number of rounds.

The results give evidence that the S-boxes and the transformation L are well chosen from the
algebraic point of view.

It would be interesting to find out the group generated by the 32 round cipher mappings, but
this seems to be very difficult, since the key scheduling must be taken into consideration.

The author would like to thank Mr. R. Gretmann for the careful preparation of the programs
for the mentioned computations.
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